Improving Efficiency of Density-Based Shape Descriptors for 3D Object Retrieval

نویسندگان

  • Ceyhun Burak Akgül
  • Bülent Sankur
  • Yücel Yemez
  • Francis J. M. Schmitt
چکیده

We consider 3D shape description as a probability modeling problem. The local surface properties are first measured via various features, and then the probability density function (pdf) of the multidimensional feature vector becomes the shape descriptor. Our prior work has shown that, for 3D object retrieval, pdf-based schemes can provide descriptors that are computationally efficient and performance-wise on a par with or better than the state-of-the-art methods. In this paper, we specifically focus on discretization problems in the multidimensional feature space, selection of density evaluation points and dimensionality reduction techniques to further improve the performance of our densitybased descriptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بازیابی مبتنی بر شکل اجسام با توصیفگرهای بدست آمده از فرآیند رشد کانتوری

In this paper, a novel shape descriptor for shape-based object retrieval is proposed. A growing process is introduced in which a contour is reconstructed from the bounding circle of the shape. In this growing process, circle points move toward the shape in normal direction until they  get to the shape contour. Three different shape descriptors are extracted from this process: the first descript...

متن کامل

Density-Based Shape Descriptors for 3D Object Retrieval

We develop a probabilistic framework that computes 3D shape descriptors in a more rigorous and accurate manner than usual histogram-based methods for the purpose of 3D object retrieval. We first use a numerical analytical approach to extract the shape information from each mesh triangle in a better way than the sparse sampling approach. These measurements are then combined to build a probabilit...

متن کامل

Density-Based 3D Shape Descriptors

We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf) of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we pr...

متن کامل

Evaluation of Kernel Based Methods for Relevance Feedback in 3d Shape Retrieval

Relevance feedback in information retrieval is an iterative search technique to bridge the semantic gap between the high level user intention and low level data representation. The main motivation for this work is that there is very little research done on applicability of relevance feedback methods to 3D shape retrieval. We experimentally evaluate 4 state-of-the-art techniques stemming frommac...

متن کامل

A new shape retrieval method using the Group delay of the Fourier descriptors

In this paper, we introduced a new way to analyze the shape using a new Fourier based descriptor, which is the smoothed derivative of the phase of the Fourier descriptors. It is extracted from the complex boundary of the shape, and is called the smoothed group delay (SGD). The usage of SGD on the Fourier phase descriptors, allows a compact representation of the shape boundaries which is robust ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007